These functions are one of many R functions enabling users to assess variable descriptives. They have been developed to mimic SPSS' 'EXAMINE' syntax command ('Explore' in the menu) as closely as possible to ease the transition for new R users and facilitate teaching courses where both programs are taught alongside each other.
examine(..., stem = TRUE, plots = TRUE, extremeValues = 5, descr.include = NULL, qqCI = TRUE, conf.level = 0.95) examineBy(..., by=NULL, stem = TRUE, plots = TRUE, extremeValues = 5, descr.include=NULL, qqCI = TRUE, conf.level=.95)
… | The first argument is a list of variables to provide descriptives for. Because these are the first arguments, the other arguments must be named explicitly so R does not confuse them for something that should be part of the dots. |
---|---|
by | A variable by which to split the dataset before calling |
stem | Whether to display a stem and leaf plot. |
plots | Whether to display the plots generated by the |
extremeValues | How many extreme values to show at either end (the highest and lowest values). When set to FALSE (or 0), no extreme values are shown. |
qqCI | Whether to display confidence intervals in the QQ-plot. |
descr.include | Which descriptives to include; see |
conf.level | The level of confidence of the confidence interval. |
This function basically just calls the descr
function, optionally supplemented with calls to stem
, dataShape
.
A list that is displayed when printed.
### Look at the miles per gallon descriptives: examine(mtcars$mpg, stem=FALSE, plots=FALSE);#> ###### Descriptives for mtcars$mpg #> #> Describing the central tendency: #> mean median mode 95% CI mean #> 20.09 19.2 (multi) [17.92; 22.26] #> #> Describing the spread: #> var sd iqr se #> 36.32 6.027 7.45 1.065 #> #> Describing the range: #> min q1 q3 max #> 10.4 15.2 22.8 33.9 #> #> Describing the distribution shape: #> skewness kurtosis dip #> 0.6724 -0.02201 0.0569 #> #> Describing the sample size: #> total NA. valid #> 32 0 32 #> #> #> ###### Rows with lowest values: #> value #> 15 10.4 #> 16 10.4 #> 24 13.3 #> 7 14.3 #> 17 14.7 #> #> ###### Rows with highest values: #> value #> 26 27.3 #> 19 30.4 #> 28 30.4 #> 18 32.4 #> 20 33.9 #>### Separate for the different number of cylinders: examineBy(mtcars$mpg, by=mtcars$cyl, stem=FALSE, plots=FALSE, extremeValues=FALSE, descr.include=c('central tendency', 'spread'));#> ############################################################ #> 4 #> ############################################################ #> #> ###### Descriptives for mpg #> #> Describing the central tendency: #> mean median mode 95% CI mean #> 26.66 26 (multi) [23.63; 29.69] #> #> Describing the spread: #> var sd iqr se #> 20.34 4.51 7.6 1.36 #> #> #> ############################################################ #> 6 #> ############################################################ #> #> ###### Descriptives for mpg #> #> Describing the central tendency: #> mean median mode 95% CI mean #> 19.74 19.7 21 [18.4; 21.09] #> #> Describing the spread: #> var sd iqr se #> 2.113 1.454 2.9 0.5494 #> #> #> ############################################################ #> 8 #> ############################################################ #> #> ###### Descriptives for mpg #> #> Describing the central tendency: #> mean median mode 95% CI mean #> 15.1 15.2 (multi) [13.62; 16.58] #> #> Describing the spread: #> var sd iqr se #> 6.554 2.56 2.1 0.6842 #> #>