A function to detect participants that consistently respond exceptionally.
exceptionalScores(dat, items = NULL, exception = 0.025, totalOnly = TRUE, append = TRUE, both = TRUE, silent = FALSE, suffix = "_isExceptional", totalVarName = "exceptionalScores")
dat | The dataframe containing the variables to inspect, or the vector to inspect
(but for vectors, |
---|---|
items | The names of the variables to inspect. |
exception | When an item will be considered exceptional, passed on as |
totalOnly | Whether to return only the number of exceptional scores for each row in the dataframe, or for each inspected item, which values are exceptional. |
append | Whether to return the supplied dataframe with the new variable(s) appended (if TRUE), or whether to only return the new variable(s) (if FALSE). |
both | Whether to look for both low and high exceptional scores (TRUE) or not (FALSE;
see |
silent | Can be used to suppress messages. |
suffix | If not returning the total number of exceptional values, for each inspected variable, a new variable is returned indicating which values are exceptional. The text string is appended to each original variable name to create the new variable names. |
totalVarName | If returning only the total number of exceptional values, and appending these to the provided dataset, this text string is used as variable name. |
Either a vector containing the number of exceptional values, a dataset containing, for each inspected variable, which values are exceptional, or the provided dataset where either the total or the exceptional values for each variable are appended.
exceptionalScores(mtcars)#> No items specified: extracting all variable names in dataframe.#> mpg cyl disp hp drat wt qsec vs am gear carb #> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 #> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 #> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 #> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 #> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 #> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 #> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 #> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 #> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 #> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 #> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 #> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 #> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 #> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 #> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 #> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 #> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 #> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 #> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 #> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 #> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 #> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 #> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 #> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 #> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 #> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 #> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 #> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 #> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 #> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 #> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 #> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 #> exceptionalScores #> Mazda RX4 0 #> Mazda RX4 Wag 0 #> Datsun 710 0 #> Hornet 4 Drive 0 #> Hornet Sportabout 0 #> Valiant 0 #> Duster 360 0 #> Merc 240D 0 #> Merc 230 1 #> Merc 280 0 #> Merc 280C 0 #> Merc 450SE 0 #> Merc 450SL 0 #> Merc 450SLC 0 #> Cadillac Fleetwood 1 #> Lincoln Continental 1 #> Chrysler Imperial 0 #> Fiat 128 0 #> Honda Civic 2 #> Toyota Corolla 2 #> Toyota Corona 0 #> Dodge Challenger 0 #> AMC Javelin 0 #> Camaro Z28 0 #> Pontiac Firebird 0 #> Fiat X1-9 0 #> Porsche 914-2 0 #> Lotus Europa 1 #> Ford Pantera L 1 #> Ferrari Dino 0 #> Maserati Bora 2 #> Volvo 142E 0