Function to show frequencies in a manner similar to what SPSS' "FREQUENCIES" command does. Note that frequency
is an alias for freq
.
freq(vector, digits = 1, nsmall=1, transposed=FALSE, round=1, plot=FALSE, plotTheme = theme_bw()) frequencies(..., digits = 1, nsmall = 1, transposed = FALSE, round = 1, plot = FALSE, plotTheme = theme_bw())
vector | A vector of values to compute frequencies for. |
---|---|
digits | Minimum number of significant digits to show in result. |
nsmall | Minimum number of digits after the decimal point to show in the result. |
transposed | Whether to transpose the results when printing them (this can be useful for blind users). |
round | Number of digits to round the results to (can be used in conjunction with digits to determine format of results). |
plot | If true, a histogram is shown of the variable. |
plotTheme | The ggplot2 theme to use. |
… | The variables of which to provide frequencies |
An object with several elements, the most notable of which is:
A dataframe with the frequencies
### Create factor vector ourFactor <- factor(mtcars$gear, levels=c(3,4,5), labels=c("three", "four", "five")); ### Add some missing values factorWithMissings <- ourFactor; factorWithMissings[10] <- factorWithMissings[20] <- NA; ### Show frequencies freq(ourFactor);#> Frequencies Perc.Total Perc.Valid Cumulative #> three 15 46.9 46.9 46.9 #> four 12 37.5 37.5 84.4 #> five 5 15.6 15.6 100.0 #> Total valid 32 100.0 100.0freq(factorWithMissings);#> Frequencies Perc.Total Perc.Valid Cumulative #> three 15 46.9 50.0 50.0 #> four 10 31.2 33.3 83.3 #> five 5 15.6 16.7 100.0 #> Total valid 30 93.8 100.0 #> NA (missing) 2 6.2 #> Total 32 100.0### ... Or for all of them at one frequencies(ourFactor, factorWithMissings);#> ### Frequencies for 'ourFactor' #> #> Frequencies Perc.Total Perc.Valid Cumulative #> three 15 46.9 46.9 46.9 #> four 12 37.5 37.5 84.4 #> five 5 15.6 15.6 100.0 #> Total valid 32 100.0 100.0 #> #> ### Frequencies for 'factorWithMissings' #> #> Frequencies Perc.Total Perc.Valid Cumulative #> three 15 46.9 50.0 50.0 #> four 10 31.2 33.3 83.3 #> five 5 15.6 16.7 100.0 #> Total valid 30 93.8 100.0 #> NA (missing) 2 6.2 #> Total 32 100.0 #>