scaleDiagnosis provides a number of diagnostics for a scale (an aggregative measure consisting of several items).
scaleDiagnosis(dat=NULL, items=NULL, plotSize=180, sizeMultiplier = 1, axisLabels = "none", scaleReliability.ci=FALSE, conf.level=.95, powerHist=TRUE, ...)
dat | A dataframe containing the items in the scale. All variables in this dataframe will be used if items is NULL. |
---|---|
items | If not NULL, this should be a character vector with the names of the variables in the dataframe that represent items in the scale. |
plotSize | Size of the final plot in millimeters. |
sizeMultiplier | Allows more flexible control over the size of the plot elements |
axisLabels | Passed to ggpairs function to set axisLabels. |
scaleReliability.ci | TRUE or FALSE: whether to compute confidence intervals for Cronbach's Alpha and Omega (uses bootstrapping function in MBESS, takes a while). |
conf.level | Confidence of confidence intervals for reliability estimates (if requested with scaleReliability.ci). |
powerHist | Whether to use the default ggpairs histogram on the diagonal of the scattermatrix, or whether to use the powerHist version. |
... | Additional arguments are passed on to powerHist. |
Function to generate an object with several useful statistics and a plot to assess how the elements (usually items) in a scale relate to each other, such as Cronbach's Alpha, omega, the Greatest Lower Bound, a factor analysis, and a correlation matrix.
An object with the input and several output variables. Most notably:
The results of scaleReliability.
A Principal Components Analysis
A Factor Analysis
Decriptive statistics about the items
A scattermatrix with histograms on the diagonal and correlation coefficients in the upper right half.
### Note: the 'not run' is simply because running takes a lot of time, ### but these examples are all safe to run!# NOT RUN { ### This will prompt the user to select an SPSS file scaleDiagnosis(); ### Generate a datafile to use exampleData <- data.frame(item1=rnorm(100)); exampleData$item2 <- exampleData$item1+rnorm(100); exampleData$item3 <- exampleData$item1+rnorm(100); exampleData$item4 <- exampleData$item2+rnorm(100); exampleData$item5 <- exampleData$item2+rnorm(100); ### Use a selection of two variables scaleDiagnosis(dat=exampleData, items=c('item2', 'item4')); ### Use all items scaleDiagnosis(dat=exampleData); # }